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Abstract—We describe experiments concerning enhancing a
simple, yet effective method to compute high-accuracy prediction
intervals (PIs) for day-ahead wide area wind power forecasts. The
resulting PIs are useful for operators and traders, to improve
reliability, anticipate threats, and increase situational awareness.

I. INTRODUCTION

The potential value of probabilistic forecasts for wind
power, particularly in the short term, has been discussed for
some time (see, e.g., [1]). Recent research describes methods
for generating wide area probabilistic forecasts as the basis
for constructing scenarios for use in day-ahead and hours-
ahead commitment of thermal generating units and dispatch
of energy (see, e.g., [2]–[5])

The Bonneville Power Administration (BPA) employs prob-
abilistic forecasts for a different, albeit related, purpose: pre-
diction intervals for day-ahead wind power forecasts. These
intervals assist operators and traders to anticipate threats,
identify market opportunities, and generally enhance situa-
tional awareness for power system operation. In this paper, we
begin by describing a simple, yet effective method to compute
prediction intervals for wide area wind power using data that
is readily available to utilities and balancing authorities. We
then describe a data-driven enhancement of our base method
that makes use of a proxy for weather variability and stability,
to improve overall accuracy.

Specifically, we describe methods to compute (100-α)%
prediction intervals (PI) for wide area wind power forecasts
that are linked to actual generation. The quality of our PIs
is assessed by various metrics, based on the observation that
measured wind power quantities should reside within the PI
exactly (100-α)% of the time. In contrast, traditional vendor-
supplied wind power forecast PIs are based on the NWP
(Numerical Weather Prediction)-generated forecast traces used
to calculate projected wind power. At BPA, PIs are issued
hourly for the next 168 hours, including the 24 hours of the
day-ahead planning window. An example of a PI generated by
our method for BPA is shown in Figure 1.
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Figure 1. An example of a 70% prediction interval for forecasted BPA wind
power. The PI is created day-ahead. Actual (measured) quantities are depicted
as points.

II. COMPUTING PREDICTION INTERVALS

To describe our method, it is useful to introduce the notion
of a date-time pair for which forecasted wind power data are
available. In the computational experiments described below,
times are always hours of the day, although our method is
general and can be applied using data with an arbitrary time
resolution. For each date-time pair, we define the forecast
error (often simply referred to as the error) as the difference
between the observed (measured) wind power and the forecast.
We assume the availability of a historical database of forecasts
and corresponding observations, which is generally maintained
by system operators.

We compute errors and construct an empirical non-
parametric error distribution based on the historical data. We
then estimate various empirical order statistics. The α
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200 order statistics provide the estimates of the prediction
interval (PI), which is placed around the “point” forecast of a
future date-time pair in order to compute PI limits. In cases
where very wide PIs (e.g., 99% or higher) are desired, it may
be necessary to fit an analytic (but still non-parametric) error
distribution when there is insufficient data, such that empirical
order statistics are unreliable estimates. In our motivating use



case, 70% intervals are desired (i.e., α = 0.3) and empirical
order statistics provide effective estimates.

All historic date-time pairs for which there is a reported
forecast and a corresponding measured quantity are referred to
as the pre-window; this allows for missing / dropped quantities.
In general, we do not use all of the data in the pre-window.
Instead, we use categorization methods to down-sample the
data in the pre-window, identifying only the most relevant
date-time pairs for the current forecast and computing order
statistics and PIs based on this data. The specifics of our
categorization methods are described subsequently.

A. Categorization by Megawatt Window

It is well known that many statistical procedures involving
wind power benefit from either segmenting the data by power
level (see, e.g., [6], [7], which are in turn based on [8]) or by
transforming the data to stabilize the variance across power
levels (see, e.g., [9]). Here, we consider segmentation methods
because they are consistent with our proposed enhancements
to compute PIs. When segmenting by wind power, we only
use data in the pre-window for which the historical forecast
lies inside a MW window around the corresponding next-day
forecasted wind power quantity.

To determine the MW window, we estimate the (normalized)
empirical order statistic function – denoted “eos” – of the
forecasts in the pre-window. The function eos(x;P ) returns the
ith value in the ordered set P for i ∈ {1, . . . , |P |} if x = i/|P |
and an interpolated value otherwise; |P | denotes the number of
elements in P . By convention, for all P , eos(0;P ) equals zero
and eos(1;P ) equals the installed wind power capacity. We
denote the inverse of this function by eos−1, with eos−1(x) =
1 for all x greater than or equal to the installed capacity and
eos−1(x) = 0 for x ≤ 0.

An interval with a category width smw ∈ [0, 1] is placed
around the normalized empirical order statistic of the fore-
casted wind power quantity v. The category width dictates the
number of data points in the MW window. If there are W
points in the pre-window, the MW window should contain
approximately smwW points, with half of the points both
smaller and larger than the forecasted quantity. Because the
window implied by smw may extend below zero or above
the maximum power, we may obtain fewer data points than
expected. Finally, the corresponding forecasts of the prediction
interval limits are computed by inverting the empirical order
statistics to obtain the limits for the MW window. The lower
bound of the window is given as

eos(max
{
0, eos−1 (v;P )− smw

2

}
;P )

and the upper bound is given as

eos(min
{
1, eos−1 (v;P ) +

smw
2

}
;P )

B. Categorization by Vendor Prediction Interval Width

Categorization by power level provides reasonably good
prediction intervals, but incorporating information about the
stability of the weather and the weather forecast improves

quality further, as as we will show. Vendor-supplied power
forecasts provided to BPA and numerous other system oper-
ators provide estimated PIs based on ensembles of weather
forecast models, in addition to their “point” forecasts of
wind power. The idea of using model ensembles to create
probabilistic forecasts has been discussed for some time (see,
e.g., [10]) and the details are beyond the scope of the present
work. Our point here is that we can use the width of these
vendor-supplied PIs to further improve categorization. If the
width of the vendor-supplied PI for the forecasted date-time
pair is small, we only consider in the pre-window those historic
date-time pairs for which the PI width is also small; if it
is large, we only consider date-time pairs with wide PIs.
Informally, we consider vendor-supplied PIs as a proxy for
weather stability and model confidence.

We estimate the empirical order statistics of the widths of
vendor-supplied PIs for those date-time pairs in the appropriate
MW window, as identified via the segmentation procedure
described above. We then place an interval around eos (w;P )
using a category width svpi ∈ [0, 1]. The category width
parameter is intended to control for the number of points
in the window, in the nominal case. If there are W points
in the MW window, the vendor PI window contains at most
svpiW points. Nominally, half of these points correspond to
PIs that are smaller and larger than the width of the given
PI. However, there are cases other than the nominal case. For
example, there may be fewer than svpiW/2 points on either
side because the vendor-supplied forecast PI width may be
near the largest or smallest value for date-time paris contained
in the MW window. Finally, we compute the corresponding
widths of the interval limits by inverting the empirical order
statistics, yielding the limits of the width window.

C. Implementation

To rigorously describe exactly how empirical order statistics
are computed, we temporarily drop explicit specification of the
list P from the function eos (eos with P implicit). Consider
a list of values [x1, . . . , xn] with x1 < x2 < · · · < xn. The
order of xi, i = 1, . . . , n, then is i and the probability that the
outcome is smaller or equal to xi is i

n+1 . Now consider x ∈ <.
If x = xi for an i ∈ {1, . . . , n}, we have eos (x) = i

n+1 . If
xi < x < xi+1, the probability that the outcome is smaller
than or equal to x is

eos (x) = eos (xi)
xi+1 − x
xi+1 − xi

+ eos (xi+1)
x− xi

xi+1 − xi

=
i (xi+1 − x) + (i+ 1) (x− xi)

(n+ 1) (xi+1 − xi)
.

If x < x1 we take the linear function

g (t) =
1

(n+ 1) (x2 − x1)
t+

x2 − 2x1
(n+ 1) (x2 − x1)

through the points
(
x1,

1
n+1

)
and

(
x2,

2
n+1

)
and set

eos (x) = max {0, g (x)} .



Now assume x > xn. We take the linear function

h (t) =
1

(n+ 1) (xn − xn−1)
t+

n (xn − xn−1)− xn
(n+ 1) (xn − xn−1)

through the points
(
xn−1,

n−1
n+1

)
and

(
xn,

n
n+1

)
and set

eos (x) = min {h (x) , 1} .

To estimate the empirical order statistics we require at least
20 data points. Because we require at least 72 data points in
the pre-window, we are always able to estimate the empirical
order statistics for the computation of the MW window. If
there are less than 20 data points in the MW window or the
vendor PI window, we increase the single category width for
the window until there are 20 data points in that window. Then
we are able to compute the empirical order statistics of either
the errors for computing the prediction intervals or the widths
for computing the PI width window.

Note that it is a little confusing to discuss the vendor PI
width window because of two uses of the word “width.” The
window has a width, but it is being constructed based on the
width of the vendor-supplied prediction interval. To help with
this we refer to points selected by the categorization as being
in the window and use “window width” to describe the width
of the window used to select the points. This window cordons
off a section of the vendor-supplied PI width values.

If we categorize by the width of the vendor-supplied pre-
diction intervals and there are fewer than 20 data points in
the resulting window, we increase the single category width
for the window until there are 20 data points in it. Since we
start the computation of the vendor PI window with at least
20 data points, we can be sure that there is a single category
width for the PI width window that fulfills this property. In
the worst case, the category width will be incremented until
it is big enough to cover the whole MW window.

III. COMPUTATIONAL EXPERIMENTS

Our tests use data from the Bonneville Power Administra-
tion (BPA). The BPA is a federal Power Market Authority
that owns 75% of the installed transmission in the U.S. Pacific
Northwest. A good wind resource and easy access to transmis-
sion has resulted in the development of 33 wind generation
facilities (also known as projects) – presently ∼4,500 MW –
in the BPA service territory. Historical wind power forecasts
and actual generation values from both individual BPA wind
projects and the aggregate fleet were made available to the
research team. The BPA’s Centralized Wind Power Forecasting
Initiative utilizes two commercial wind power forecasting
vendors. Vendor forecasts are evaluated for quality and the
better of the two is published to BPA systems as the BPA
Official Forecast. The second forecast serves a reliability/back
up function. The focus of this research is on the forecasts pro-
vided by the primary BPA vendor and include the average or
expected generation values and associated prediction intervals.

To evaluate the quality of our computed prediction intervals,
we perform a rolling horizon re-enactment. By re-enactment,
we refer to a walk forward through date-times in the past,

computing prediction intervals using only data available prior
to that date-time. In doing so, we compute prediction intervals
using only relevant historical information, and are able to
assess prediction interval quality using actual observations not
used in the computation of those prediction intervals. In all
of our tests, we consider 70% prediction intervals, to mirror
existing BPA practice.

A. Evaluation of Prediction Intervals

To assess the quality of our computed prediction intervals
we evaluate them based on their skill and sharpness [11],
using re-enactments where we determine what would have
happened had we been using our prediction intervals in actual
operations. Skill refers to the degree to which the fraction of
new observations that fall inside a prediction interval matches
1 − α. Sharpness refers to the average width (in MW) of a
prediction intervals.

We compute the percentage of the date-times where the
observed (actual) value lies outside the prediction interval. An
observed value lies outside of the prediction interval on the
“left side” (“right side”) if and only if the observed value is
strictly smaller (larger) than the lower (upper) limit. These
percentages indicate how well our prediction intervals contain
the observed values. Our objective is to generate prediction
intervals for which left and right percentages are as close
as possible to α

2%. As we show below, prediction interval
behavior can be significantly different on the left and right
sides. Thus, we choose to report and analyze the left and
right quantities separately. Finally, we use the average width
of prediction intervals to quantify sharpness. If prediction
intervals are too wide, they lose their utility for situational
awareness and operations planning.

B. Numerical Results

We use BPA data ranging from 11/01/2015 to 04/24/2016.
Our rolling horizon re-enactment starts on 02/01/2016, such
that sufficient historical data is available. The installed wind
BPA capacity for this period is 4500 MW.

BPA vendors provide forecasts and prediction intervals
(based on NWP forecast trace statistics) for a 168 hour rolling
interval. Because we are focused on day-ahead prediction
intervals, we use the forecasts for the hours of day d that are
released at 11:00 AM on day d−1. In the experiments below,
we report absolute error quantities as our analysis indicates
that there is no advantage to using the relative error.

We summarize the quality of our prediction intervals com-
puted both with and without categorization by vendor-supplied
prediction interval widths in Tables I and II . They record the
(1) the percentage of points that fall outside of the prediction
intervals on both sides of the forecast; an ideal value would be
15, and (2) the average width of the prediction intervals both
overall and broken out by the width below (left) and above
(right) the prediction; obviously, narrower is better.

In Table I, we observe that the prediction intervals computed
with our method – both with or without categorization by
vendor supplied PI width – are significantly better in terms of



both skill and sharpness than the vendor supplied prediction
intervals (official). In Table II, we see that both the skill
and sharpness of the prediction intervals computed with our
approach are significantly improved when categorizing by
vendor-supplied PI widths. In particular, the left side skill is
significantly worse when vendor-supplied PI width categoriza-
tion is not employed.

Table I
EVALUATION OF 70% PIS COMPUTED WITHOUT
VENDOR-SUPPLIED PI WIDTH CATEGORIZATION

s*
mw = 0.1 s*

mw = 0.2 Official

Out left (%) 11.54 11.54 22.68
Out right (%) 14.72 14.55 6.37
Avg width (MW) 709.67 705.32 980.27
Avg width left (MW) 378.72 371.09 454.17
Avg width right (MW) 330.95 334.23 526.10

Table II
EVALUATION OF 70% PIS COMPUTED WITH VENDOR-SUPPLIED

PI WIDTH CATEGORIZATION

s*
mw = 0.4 s*

mw = 0.5

s#
vpi = 0.4 0.5 0.4 0.5

Out left (%) 14.19 13.90 14.66 14.72
Out right (%) 14.90 14.96 15.02 14.90
Avg width (MW) 715.02 716.43 712.71 713.83
Avg width left (MW) 377.83 379.12 375.66 376.43
Avg width right (MW) 337.18 337.31 337.05 337.40
* category width for the categorization by MW window.
# category width for the categorization by the width of vendor

supplied approximate prediction intervals.

Overall, our computed prediction intervals with vendor-
supplied PI width categorization have good skill on both
the left and right sides. All of our computed prediction
intervals have a smaller average width and better skill than the
approximate prediction intervals provided by the the official
values generated by BPA (in the column labeled “Official”).

Figures 2 and 3 show prediction intervals for the days
03/15/2016 and 04/17/2016, respectively. The wind power
that was actually observed for each hour are shown as red
dots. In each figure, subplot (a) on top shows the prediction
intervals that are computed without categorization by vendor-
supplied PI widths and with categorization by MW window
using smw=0.1. The bottom subplot (b) shows the prediction
intervals that are computed using categorization by vendor-
supplied PI widths using svpi=0.4 and MW window catego-
rization using smw=0.5. Both the smw and svpi parameters
used were the best obtained after limited experimentation.

On 03/15/2016, we observe that the prediction intervals
computed using vendor-supplied PI width categorization are
somewhat tighter than the prediction intervals computed using
only MW-based categorization, but they still approximately
contain (with the exception of hour 1 and 24, which are
slightly outside the corresponding PI) the observations. On
04/17/2016, we observe that the prediction intervals computed
using vendor-supplied PI width categorization are tighter than
those computed using only MW window-based categorization,
such that the lower bound of the prediction interval is greater

(a) Computed prediction intervals for 2016-03-15, without vendor prediction
interval widths; smw = 0.1.

(b) Computed prediction intervals for 2016-03-15, with vendor prediction
interval widths; smw = 0.5 and svpi = 0.4.

Figure 2. Prediction Intervals for 2016-03-15

than the observation for hours 1 through 5. This result il-
lustrates why the left-side skill of our computed prediction
intervals improves if we use vendor-supplied PI width cate-
gorization in addition to MW window-based categorization.
Further, we see that the prediction intervals computed with
the vendor-supplied PI width categorization are wider (less
sharp) than those computed using only MW window-based
categorization, for the hours in the second half of the day.

IV. CONCLUSION

We have described a novel method for computing prediction
intervals for forecasted wide area wind power, using data from
BPA for experimental testing. By analyzing historical error
distributions and leveraging straightforward MW window-
based categorization, we are able to significantly improve
over the skill and sharpness provided by vendor-supplied
prediction intervals. We can further improve the accuracy



(a) Computed prediction intervals for 2016-04-17, without vendor prediction
interval widths, smw = 0.1

(b) Computed prediction intervals for 2016-04-17, with vendor prediction
interval widths; smw = 0.5 and svpi = 0.4.

Figure 3. Prediction Intervals for 2016-04-17

of our method by adding categorization based on the width
of vendor-supplied prediction intervals –which provide some
indication of the stability of a particular forecast. Using both
categorization schemes, we are able to obtain prediction inter-
vals with very high skill, e.g., within 0.5% on both the low and
high ends of 70% prediction intervals. Further, our prediction
interval widths (sharpness) are significantly improved over that
obtained by the vendor prediction intervals.

Our method leverages both historical forecasts and cor-
responding actuals readily available to a system operator,
in addition to prediction interval data provided by many
forecasting vendors. Thus, integration into existing system
operations is relatively straightforward.

A number of topics remain as future research. One major
practical issue involves how to best display prediction inter-
vals, specifically while varying α. One possibility is shown in

Figure 4. Prediction intervals for wind power forecast at various values of α,
on a single graphic. Lighter colors correspond to lower α values (i.e., larger
% PI).

Figure 4, in which we show prediction intervals over various
α quantities. Further, there is the challenge of extending our
methodology to the computation and display of prediction
intervals for solar power and other sources of uncertainty.
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